
Scientific
Workflows
in the Era
of Clouds

Péter Kacsuk
MTA SZTAKI

Agenda

• Lessons learnt from FP7 European projects using
workflows

• Requirements for simulation purpose workflows in the
H2020 CloudiFacturing project

• Solving the workflow sharing and reuse problems in
clouds

• Infrastructure-aware workflows for clouds

• Flowbster stream-oriented workflow system for clouds

• Summary

2

Lessons Learnt from FP7 projects

Workflow

and

gateway

Workflow and

PaaS for

simulation

Workflow

sharing

and

reuse

Workflow

for

science

Workflow

for

simulation

Workflow reuse for

simulation both for

academics and

companies

3

4

How Do These Projects Contribute to
CloudiFacturing?

• SCI-BUS has developed WS-PGRADE/gUSE workflow system and
gateway framework for scientific communities and companies

• In CloudSME, WS-PGRADE/gUSE was applied for simulation
applications of SMEs to run in even hybrid, heterogeneous clouds by
integrating its stack with CloudBroker Platform

• CloudFlow has developed the CloudFlow workflow infrastructure for
companies to enable the integration of different companies’
products into a single workflow application

• SHIWA has developed the coarse-grain interoperability solution to
share and combine workflows written in different workflow systems

• ER-Flow enabled the shared and integrated usage of existing
scientific workflows developed in different workflow systems (put
into practice the results of SHIWA)

• CloudiFacturing will integrate all these results to enable the shared
and integrated usage of the workflows developed in CloudSME and
CloudFlow

SCI-BUS in a NutShell: WS-PGRADE/gUSE

HTC
Infrastructures

Large variety of
data storages

HPC
Infrastructures

DCI Bridge Data Avenue

Workflow
Management

Internal
Storages

Workflow
Repository

Production

e-infrastructures

High-level

e-infrastructure

middleware (gUSE)

Workflow and

internal storage

services (gUSE)

Workflow
Editor

Data Avenue
UI

Workflow
execution
Monitor

Web user interface

(WS-PGRADE)

VizIVO
gateway

MoSGrid
Gateway

Proteomics
Gateway

Application specific

gateways (>30)

5

gUSE Based Gateways

• More than 100

deployments world-wide

• More than 20.000

downloads from 75

countries on sourceforge

6

CloudSME in a NutShell

Call directly CBP
and submit jobs

UI customization in
WS-PGRADE GUI

Use gUSE to submit
workflow from any

GUI

Deploy, develop and
run simulations on
multiple clouds

Fast application
development via
workflows

Application
deployment

7

CloudFlow in a NutShell

What the user sees

Required components

ISV contribution

Optional components

Off the shelf software

Physical machines

8

SHIWA in a NutShell

Make the WFs of the WF Ecosystem shareable and interoperable

9

SHIWA Solution: Coarse-grained Interoperability (CGI)

• Coarse-grained interoperability (CGI) = Embedding of different
workflows to achieve interoperability of WF execution frameworks

• If WF X running by WF system A contains a WF C that is to be executed
by WF system C in DCI3 then the CGI execution mechanism takes care
of executing WF C in DCI3 by WF system C

DCI 1

DCI 2

DCI 3

A

SHIWA Portal

Meta-workflow

SHIWA

Repository

10

SHIWA Success Story for LINGA Brain Research

Sub-Workflows

Management

�
��

�
�

��
�
�

	
�
�

�

�

�
��
�

��

�
�
��

�
�
��
�

�
�

�

��
�
�
�
�

�

��
�

�
�
��

�
�
��
�
�

	�
�

��
!

"
#
#

11

Multi-

Workflow

• Integrating various types of workflows for various types of user

communities

oAstrophysics

- Taverna + gUSE workflows running on Italian NGI resources

(collaboration between Canadian, French, Italian and Spannish

teams)

oComputational Chemistry

- Galaxy + gUSE + UNICORE workflows running on GERMAN

NGI resources (collaboration between several German and US

teams)

oHeliophysics

- Taverna + gUSE workflows running on SHIWA EGI resources

(collaboration between French, English and Irish teams)

oLife Science

- MOTEUR + gUSE workflows running on EGI NGI resources

(Collaboration between Dutch and German teams)

ER-Flow in a NutShell

12

Objectives of CloudiFacturing

13

14

Target of CloudiFacturing

Companies should be able

• To publish ready-to-use workflow applications

• Execute the published workflows in various clouds

Reference Production Infrastructure of SHIWA

SHIWA

App.

Repository

Application

developers
• Publish WF applications in a repository to

be continued/used by other appl. developers

SHIWA

Portal

Cloud 1

Local clusters

Supercomputers

• Use the portal/desktop to develop complex

applications (executable on various

DCIs/clouds) based on WFs stored in the

repository

Cloud N

15

Facilitates publishing and
sharing workflows

Supports:
• Abstract workflows with
multiple implementations
of 10 workflow systems
(ASCALON, gUSE, Moteur,
Taverna, etc.)

• Storing execution specific
data

SHIWA Repository

16

17

Lessons Learnt in ER-Flow

• The SHIWA CGI technology was very useful to
integrate various types of workflow

• However, we have discovered a major problem: The
infrastructure where the embedded WF is supposed
to run can be

• Inaccessible to the current user

• faulty

• removed

18

Solution in the Cloud

• Extend SHIWA Repo: three kinds of entities should be
stored

o WFs as before

o WF engines as before

o Cloud Infrastructure Descriptors (CID)

• Before executing the WF the SHIWA portal should call a
cloud orchestrator to deploy the required infrastructure
in the cloud

• There are many cloud orchestrators that help to deploy
infrastructures in the cloud based on descriptors

• One of them is Occopus (developed in SZTAKI) and this is
used to extend the SHIWA portal for deploying the
required infrastructure

SHIWA CGI Solution with Clouds

SHIWA

Repository

Cloud 2
OpenStack

SHIWA portal

Cloud 1
Amazon

Running WFs stored in

the SHIWA Repo in

various clouds

Cloud N
OpenNebula

Required CID

Required WF Engine

WF to be executed

19

WF to be executed

19

Infrastructure-aware Workflows

20

The Problem

SEQ1

Auto-

dockWF

Map

Reduce

SEQ3

21

Infrastructure-aware Workflow

Occopus

Repo

contains

CIDs

SEQ1

Auto-

dockWF

Map

Reduce

Destroy

Destroy

SEQ3

CID

CID WF

Deploy

(Hadoop)

Deploy

(BOINC)

SHIWA Repo

contains

WFs, WEs

22

Hadoop/MapReduce Workflow Pattern

• Stage 1 or Deploy Hadoop Node: Launch servers in a cloud, connect to
master node and setup Hadoop cluster

• Stage 2 or Execute Node: Upload input files and job executable to master
node, execute job and get result back

• Stage 3 or Destroy Hadoop Node: Destroy cluster to free up resources

Infrastructure-aware
workflow

Run
MapReduce

Create
Hadoop

Remove
Hadoop

23

Implementation in CloudSME

24

SHIWA

Repository

SHIWA

portal

4. Deploy

infrastructure

2. Recognizes Deploy node (of Hadoop)

Generic Infrastructure-aware Workflow Execution

1. Download WF

Occopus

Repository

3. Download CID

(of Hadoop)

5. Runs next node (MapReduce execution)

25

Advantage: WF developer can specify

for any part of the workflow what kind

of infrastructure it requires and the WF

enactor guarantees to build and use

the specified infrastructure

Infrastructure-aware Workflow Issues

SEQ1

Map

Reduce
Destroy

SEQ3

Deploy

(Hadoop)

26

Map

Reduce

Map

Reduce

• How many nodes can use the infrastructure of the same deploy node?

• Can parallel branch node use the infrastructure of the same deploy

node?

Structured versus unstructured concept

Flowbster

27

• There are two options to process large data sets:

o 1. WS-PGRDADE/gUSE and CloudFlow: A whole data set
(e.g. file) is given as input for the workflow. The next data
set can be sent as input for the workflow only when the
processing of the previous data set is completely finished by
the workflow (job-oriented workflow management)

o 2. Divide the data set into many small items and these items
as stream should flow through the workflow. Nodes of the
workflow work in parallel on different data element
(stream-oriented or pipeline workflow management) ->
Flowbster

Lessons Learnt in CloudSME and ER-Flow

28

Concept of Flowbster

• The goal of Flowbster is to enable
o The quick deployment of the workflow as a pipeline infrastructure in the

cloud

o Once the pipeline infrastructure is created in the cloud it is activated
and data elements of the data set to be processed flow through the
pipeline

o As the data set flows through the pipeline its data elements are
processed as defined by the Flowbster workflow

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_file

Data set
to be

processed

Processed
data set

OCCI

storage

Swift

storageEGI FedCloud service

29

Flowbster Contra Job-oriented Workflow Systems

• Nodes of the Flowbster workflow directly communicate the
data among them

• Data is passed through the workflow as a data stream

• A node is activated and executes the assigned task when all
the input data arrived

• Nodes of Flowbster workflows are deployed in the cloud as
VMs (or docker containers) and they exist until all the input
data sets are processed

• As a result a Flowbster workflow works as a temporary
virtual infrastructure deployed in the cloud

• Input data sets flow through this virtual infrastructure and
meanwhile they flow through they are processed by the
nodes of the workflow

30

Structure of the Flowbster Workflow System

• Goal:
o To create the Flowbster workflow in the cloud without any cloud

knowledge

• Solution:
o To provide a layered concept where users with different expertise can

enter to the use of Flowbster

• 4 layers:

Graphical design layer

Application description
layer

Workflow system layer

Cloud deployment and
orchestration layer

Flowbster layers

Occopus layer

31

Occopus Layer

• Occopus is a cloud orchestrator and manager tool

• It automatically deploys virtual infrastructures (like Flowbster
workflows) in the cloud based on an Occopus descriptor that
consists of:
o Virtual infrastructure description:

• Specifies the nodes (services) to be deployed and all cloud-independent
attributes e.g. input values for a service.

• Specifies the dependencies among the nodes, to decide the order of
deployment

• Specifies scaling related attributes like min, max number of instances

o Node definition:

• Defines how to construct the node on a target cloud. This contains all cloud
dependent settings, e.g. image id, flavour, contextualization

• See detailed tutorials at the Occopus web page:
o http://occopus.lpds.sztaki.hu/tutorials

32

http://occopus.lpds.sztaki.hu/tutorials

Flowbster Workflow System Layer

• Contains uniform Flowbster workflow nodes
which have the internal structure shown in
the figure

• Every node provides the following actions:

o Receives and keeps track of the input items

o Executes the (pre-) configured application
when inputs are ready

o Identifies and forwards results of execution
towards a (pre-) configured endpoint

• Contains 3 components:
o Receiver: service to receive inputs

o Executor: service to execute predefined app

o Forwarder: service to send results of the
finished app to a predefined remote location

Receiver

Executor

Forwarder

sysconf:

global settings,

i.e. working

directories, port,

logging, etc.

appconf:

application definition,

i.e. exe, args, inputs,

outputs, endpoints, etc.

inputs

ready
job

finished

Also requires 2 config files in order to costumize the node according
to the workflow definition

33

Receiver

Executor

Forwarder

sysconf

appconf

NodeC

Receiver

Executor

Forwarder

sysconf

appconf

NodeB

Connecting Flowbster Nodes into a Workflow

• Flowbster workflow nodes work in a service
coreography

• In appconf the list of outputs is defined

• For a certain output the endpoints are defined

• An endpoint must point to a receiver node

Receiver

Executor

Forwarder

sysconf

appconf

NodeA.out1 ->

NodeB.in

NodeA.out2 ->

NodeC.in

NodeA

34

Flowbster Application Description Layer

• It contains the Occopus descriptor of the
Flowbster workflow

o Virtual infrastructure descriptor representing
the workflow graph

o Customized node definitions for each node
of the workflow. E.g. Vina node:

- &Vina

name: Vina

type: flowbster_node

scaling:

min: 5

max: 5

variables:

jobflow:

app:

exe:

filename: vina.run

tgzurl: http://foo.bar/vina.tgz

args: ''

in:

-

name: ligands.zip

-

name: config.txt

-

name: receptor.pdbqt

out:

-

name: output.tar

targetname: output.tar

targetnode: COLLECTOR

ligands

config

receptor

output

To

COLLECTOR

From

GENERATOR

Define
parallelism

35

Receiver

Executor

Forwarder

appconf:

application definition,

i.e. exe, args, inputs,

outputs, endpoints, etc.

inputs

ready
job

finished

Vina

Automatically generated

from the graphical view

Flowbster Graphical Design Layer

36

• Feeder: not part of Flowbster, should be written by the user
o Command line tool
o Feeds a given node/port of Flowbster workflow with input data items

• Gather: not part of Flowbster, should be written by the user
o Web service acting as a receiver
o Transfers the incoming data items into the target storage

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_fileFeeder Gather

Feeding and Gathering Data Set Elements

Processed
data set

Data set
to be

processed

37

Exploitable Parallelisms in Flowbster

• Parallel branch parallelism

• Pipeline parallelism

• Node scalability parallelism

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_file

A
one_file

two_file

out_file

B
one_file

two_file

out_file

C
one_file

two_file

out_file

D
one_file

two_file

out_file

D1D2

D3

38

D2

Node Scalability Parallelism in Flowbster

G:1→N W
0,1,2…N1 0,1,2…N C:N→1

1

Generator-Worker-Collector parameter sweep processing pattern:

• The Generator generates N output data from 1 input data

• The Worker should be executed for every input data -> N
Worker instances can run in parallel for processing the N data

• The Collector collects the N results coming from the N Worker
instances and after processing them creates 1 output data

G W

W’

1 0,3,…

distribution:
round-robin

C
1

W’’

0,3,…

39

Heterogeneous Multi-Cloud Setup of Flowbster

CS
Occopus

CS

G

CBP

CB

W

CBP C

CloudSigma

CloudSigma

Amazon

• Occopus can utilise multiple
clouds in a multi-cloud
system

• Nodes of deployable VI are
instantiated on different
cloud sites

• Connection is based on
public ips

G W C

VI Descriptor

40

Autodock Simulation to Measure the Performance

Binding

pocket

Sugar

(ligand)

Protein

(receptor)

Single and Multi-cloud Setup of Measurement

Occopus
G

W

C

MTA Cloud

MTA Cloud

G W C

VI Descriptor

42

MTA Cloud

W
W

Amazon

W
W

W

Performance Results

43

Autodock simulation execution time on MTA Cloud and Amazon

(3840 molecules, 240 data item each containing 16 molecules)

Performance Results

1

3.96

6.00

1

5

10

0

2

4

6

8

10

12

1 5 10

S
p

ee
d

u
p

Node number

Speed Ideal case

44

Autodock simulation speedup on MTA Cloud

Current State of Flowbster

• Open-source (License: Apache v2)

• Running prototype

• Available at github: https://github.com/occopus

• Documentation under development:
o Users’ Guide

o Developers’ Guide

o Tutorials

• Further development plans
o Dynamic scalability for node scalability parallelism

o Built-in error diagnostic and fault-recovery mechanism

45

https://github.com/occopus

46

Result: Flexible Marketplace for CloudiFacturing

Cloud 2
OpenStack

Cloud 1
Amazon

Cloud N
CloudSigma

WS-PGRADE/gUSE

(infrastructure-aware)

CloudFlow (web

service based)

Flowbster (stream-

oriented)

Conclusions

• The workflow ecosystem is very rich (rather too rich) that
prevents the sharing and reusing of existing workflows

• The talk showed how clouds can facilitate the solution of this
problem

• The introduction of infrastructure-aware workflows combined
and implemented with cloud orchestrators can significantly
increase the flexibility of executing workflows on various
virtual infrastructures

• The usage of stream-oriented, service choreography based
workflows in clouds can accelerate the processing of large
scientific date sets

47

Thank You!
Any Questions?

